问题描述:设I是一个n位十进制整数.如果将I划分为k段,则可得到k个整数.这k个整数的乘积称为I的
算法设计:对于给定的I和k,计算I的最大k乘积.
数据输入:由文件input.txt提供输入数据.文件的第1行中有2个正整数n和k.正整数n是序列的长度,正整数k是分割的段数.接下来的一行中是一个n位十进制整数(n≤10).
结果输出:将计算结果输出到文件output.txt.文件第1行中的数是计算出的最大k乘积.
算法设计:对于给定的I和k,计算I的最大k乘积.
数据输入:由文件input.txt提供输入数据.文件的第1行中有2个正整数n和k.正整数n是序列的长度,正整数k是分割的段数.接下来的一行中是一个n位十进制整数(n≤10).
结果输出:将计算结果输出到文件output.txt.文件第1行中的数是计算出的最大k乘积.
第1题
算法设计:对任意给定的整数n和k,以及完成任务i需要的时间为ti(i=1,2,...,n).设计一个优先队列式分支限界法,计算完成这n个任务的最佳调度.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和k.第2行的n个正整数是完成n个任务需要的时间.
结果输出:将计算的完成全部任务的最早时间输出到文件output.txt.
第2题
问题描述:机器人Rob在一个有n×n个方格的方形区域F中收集样本.(i,j)方格中样本的价值为v(i,j),如图3-6所示.Rob从方形区域F的左上角A点出发,向下或向右行走,
直到右下角的B点,在走过的路上,收集方格中的样本.Rob从A点到B点共走2次,试找出Rob的2条行走路径,使其取得的样本总价值最大.
算法设计:给定方形区域F中的样本分布,计算Rob的2条行走路径,使其取得的样本总价值最大.
数据输入:由文件input.xt给出输入数据.第1行有1个正整数n,表示方形区域F有n×n个方格.按下来每行有3个整数,前2个数表示方格位置,第3个数为该位置样本价值.最后一行是3个0.
结果输出:将计算的最大样本总价值输出到文件output.txt.
第3题
A.数字H的位数≥数字D的位数
B.数字H的位数≤数字D的位数
C.数字H的位数小于数字D的位数
D.数字H的位数>数字D的位数
第4题
0-1背包问题描述如下:给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问应如何选择装入背包的物品,使得装入背包中物品的总价值最大,在选择装入背包的物品时,对每种物品i只有两种选择,即装入背包或不装入背包.不能将物品i装入背包多次,也不能只装入部分的物品i.
0-1背包问题形式化描述如下:给定C>0,wi>0,vi>0(1≤i≤n),要求n元0-1向量,使得,而且达到最大.因此,0-1背包问题是一个特殊的整数规划问题.
算法设计:对于给定的n种物品的重量和价值,以及背包的容量,计算可装入背包的最大价值.
数据输入:由文件input.txt提供输入数据.文件第1行有2个正整数n和C,分别表示有n种物品,背包的容量为C.接下来的2行中,每行有n个数、分别表示各物品的价值和重量.
结果输出:将最佳装包方案及其最大价值输出到文件output.txt.文件的第1行是最大价值,第2行是最佳装包方案.
第5题
算法设计:对于给定的n件工作和n个人,计算最优分配方案和最差分配方案.
数据输入:由文件input.txt提供输入数据.文件的第1行有1个正整数n,表示有n件工作要分配给n个人做.接下来的n行中,每行有n个整数cij(1≤i≤n,1≤j≤n),表示第i个人做第j件工作产生的效益为cij.
结果输出:将计算的最小总效益和最大总效益输出到文件output.txt.
第7题
v).有向树T的每个顶点u可以看作客户,其服务需求量为w(u).每条边(u,v)的边长d(u,v)可以看作运输费用.如果在顶点u处未设置服务机构,则将顶点u处的服务需求沿有向树的边(u,v)转移到顶点v处服务机构需付出的服务转移费用为w(u)×d(u,v).树根处已设置了服务机构,现在要在树T中增设k处独立服务机构,使得整棵树T的服务转移费用最小.服务机构的独立性是指任例两个服务机构之间都不存在有向路径.
算法设计:对于给定的有向树T:计算在树T中增设k处独立服务机构的最小服务转移费用.
数据输入:由文件input.txt.给出输入数据.第1行有2个正整数n和k.n表示有向树T的边数:k是要增设的服务机构数.有向树T的顶点编号为0,1,...,n.根结点编号为0.接下来的n行中,每行存表示有向树T的一条有向边的3个整数.第i+1行的3个整数wi、vi、di分别表示编号为i的顶点的权为wi,相应的有向边为(i,vi),其边长为di.
结果输出:将计算的最小服务转移费用输出到文件output.txt.
第8题
设论述域是整数I,按照列于下面的集合在列于顶行的运算下是否封闭,在相应处填上是(Y)或非(N)。
第9题
第10题
设A是复数域C上一个n阶矩阵,λ1,λ2,···,λn是A的全部特征根(重根按重数计算)。
(i)如果f(x)是C上任意一个次数大于零的多项式,那么f(λ1),f(λ2),···,f(λn)是f(A)的全部特征根;
(ii)如果A可逆,那么λi≠0,i=1,2,...,n,并且是A-1的全部特征根。
第11题
算法设计:对于给定的维修程序时间表,计算最优时间表.
数据输入:由文件input.txt给出输入数据.第1行有2个正整数n和k.n表示仪器的工作时间单位,k是维修程序数.在接下来的k行中,每行有2个表示维修程序的整数s和t,该维修程序从第s个时间单位开始,持续t个时间单位.
结果输出:将计算出的最短维修时间输出到文件output.txt.