重要提示:请勿将账号共享给其他人使用,违者账号将被封禁!
查看《购买须知》>>>
首页 > 建筑工程类考试> 见证取样员
网友您好,请在下方输入框内输入要搜索的题目:
搜题
拍照、语音搜题,请扫码下载APP
扫一扫 下载APP
题目内容 (请给出正确答案)
[主观题]

证明:恰有i个映射f;Ni-Ni使得(1)f(0)=0;(2)f为的同态(f具有以下形式f(x)=px(modi),p=0

证明:恰有i个映射f;Ni-Ni使得

(1)f(0)=0;

(2)f为证明:恰有i个映射f;Ni-Ni使得(1)f(0)=0;(2)f为的同态(f具有以下形式f(x)=p的同态(f具有以下形式f(x)=px(modi),p=0.1,2,...,i-1);

(3)以<N3+3>为例,给出所有满足(1),(2)要求的3个同态映射f;

(4)给出所有满足f(0)=0的<N3+3>到的同态f;

(5)给出所有满足f(0)=0的<N3+3>到的同态f.

答案
查看答案
更多“证明:恰有i个映射f;Ni-Ni使得(1)f(0)=0;(2)f为的同态(f具有以下形式f(x)=px(modi),p=0”相关的问题

第1题

设V和W都是数域F上的向量空间,且dimV=n。令σ是V到W的一个线性映射。我们如此选取V的一个基:α1⌘

设V和W都是数域F上的向量空间,且dimV=n。令σ是V到W的一个线性映射。我们如此选取V的一个基:α1,···,αs,αs+1,...,αn,使得α1,···,αs是Ker(σ)的一个基。证明:(i)σ(αs+1),...,σ(αn)组成Im(σ)的一个基;

(ii)dim Ker(σ)+dim Im(σ)=n。

点击查看答案

第2题

设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

设(G,△)是一个群,而a∈G.如果f是从G到G的映射,使得对于每一个x∈G,都有f(x)=a△x△a-1,证明:f是从G到G的自同构.

点击查看答案

第3题

设fn∈Lp(E)(1≤p<∞,n∈N),试证明下列命题等价: (i)存在f∈Lp(E),使得 . (ii)存在f∈Lp(E),使得fn(x)在E上依

设fn∈Lp(E)(1≤p<∞,n∈N),试证明下列命题等价:

(i)存在f∈Lp(E),使得

设fn∈Lp(E)(1≤p<∞,n∈N),试证明下列命题等价:  (i)存在f∈Lp(E),使得

(ii)存在f∈Lp(E),使得fn(x)在E上依测度收敛于f(x),而且Γ={|fn(x)|p}具有积分一致绝对连续性,即对任给ε>0,存在δ>0,使得

设fn∈Lp(E)(1≤p<∞,n∈N),试证明下列命题等价:  (i)存在f∈Lp(E),使得  (n∈N,设fn∈Lp(E)(1≤p<∞,n∈N),试证明下列命题等价:  (i)存在f∈Lp(E),使得  且m(e)<δ).

点击查看答案

第4题

设f(x)∈C[0,1],在(0,1)内可导,f(0)=0,f(1)=1,且f(x)在[0,1]上严格递增,证明:存在ξ∈(0,1)(1≤i≤n
设f(x)∈C[0,1],在(0,1)内可导,f(0)=0,f(1)=1,且f(x)在[0,1]上严格递增,证明:存在ξ∈(0,1)(1≤i≤n

),使得设f(x)∈C[0,1],在(0,1)内可导,f(0)=0,f(1)=1,且f(x)在[0,1]上严

点击查看答案

第5题

设R与R'是环,f:R→R'是一个同态映射。证明:(i)Imf=f(R)=(f(a)|a∈R}是R'的一个子环;(

设R与R'是环,f:R→R'是一个同态映射。证明:

(i)Imf=f(R)=(f(a)|a∈R}是R'的一个子环;

(i)I=Kerf={a∈R|f(a)=0}是R的一个子环,并且对于任意r∈R,a∈I,都有ra∈I。

如果R与R'都有单位元。能不能断定f(1R)是R'的单位元1R?当f是满射时,f(1R)是不是R'的单位元?

点击查看答案

第6题

设是映射,又令,证明:(i)如果h是单射,那么f也是单射;(ii)如果h是满射,那么g也是满射;(iii)如果f

设是映射,又令,证明:(i)如果h是单射,那么f也是单射;(ii)如果h是满射,那么g也是满射;(i是映射,又令设是映射,又令,证明:(i)如果h是单射,那么f也是单射;(ii)如果h是满射,那么g也是满射;(i,证明:

(i)如果h是单射,那么f也是单射;

(ii)如果h是满射,那么g也是满射;

(iii)如果f,g都是双射,那么h也是双射,并且设是映射,又令,证明:(i)如果h是单射,那么f也是单射;(ii)如果h是满射,那么g也是满射;(i

点击查看答案

第7题

试证明: (i)是有界闭集,E是F中一个无限子集,则E'∩F≠.(ii)若且对于F中任一无限子集E,有,则F是有界闭集.

试证明:

(i)试证明:  (i)是有界闭集,E是F中一个无限子集,则E'∩F≠.(ii)若且对于F中任一无是有界闭集,E是F中一个无限子集,则E'∩F≠试证明:  (i)是有界闭集,E是F中一个无限子集,则E'∩F≠.(ii)若且对于F中任一无.(ii)若试证明:  (i)是有界闭集,E是F中一个无限子集,则E'∩F≠.(ii)若且对于F中任一无且对于F中任一无限子集E,有试证明:  (i)是有界闭集,E是F中一个无限子集,则E'∩F≠.(ii)若且对于F中任一无,则F是有界闭集.

点击查看答案

第8题

证明:n阶实矩阵A为正定矩阵的充分必要条件,是存在,n个线性无关的实向量αi=(mi1,mi2,…,min),i=1,2,…,n,使得.

证明:n阶实矩阵A为正定矩阵的充分必要条件,是存在,n个线性无关的实向量αi=(mi1,mi2,…,min),i=1,2,…,n,使得证明:n阶实矩阵A为正定矩阵的充分必要条件,是存在,n个线性无关的实向量αi=(mi1,mi2,…,.

点击查看答案

第9题

证明:定理6.6中,,情形时的罗比达法则.(I)(ii)存在Mo>0,使得f与g在(Mo,+∞)内可导,且g'(x)≠0

证明:定理6.6中,证明:定理6.6中,,情形时的罗比达法则.(I)(ii)存在Mo>0,使得f与g在(Mo,+∞)内可,情形时的罗比达法则.

(I)证明:定理6.6中,,情形时的罗比达法则.(I)(ii)存在Mo>0,使得f与g在(Mo,+∞)内可

(ii)存在Mo>0,使得f与g在(Mo,+∞)内可导,且g'(x)≠0;

(iii)证明:定理6.6中,,情形时的罗比达法则.(I)(ii)存在Mo>0,使得f与g在(Mo,+∞)内可(A为实数,也可为±∞或∞)则

证明:定理6.6中,,情形时的罗比达法则.(I)(ii)存在Mo>0,使得f与g在(Mo,+∞)内可

点击查看答案

第10题

设函数f在区间I上满足利普希茨(Lipschitz)条件,即存在常数I.>0,使得对I上的任意两点x',x&
设函数f在区间I上满足利普希茨(Lipschitz)条件,即存在常数I.>0,使得对I上的任意两点x',x&

设函数f在区间I上满足利普希茨(Lipschitz)条件,即存在常数I.>0,使得对I上的任意两点x',x''都有

设函数f在区间I上满足利普希茨(Lipschitz)条件,即存在常数I.>0,使得对I上的任意两点x

证明f在I上一致连续.

点击查看答案
下载APP
关注公众号
TOP
重置密码
账号:
旧密码:
新密码:
确认密码:
确认修改
购买搜题卡查看答案 购买前请仔细阅读《购买须知》
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《服务协议》《购买须知》
立即支付 系统将自动为您注册账号
已付款,但不能查看答案,请点这里登录即可>>>
请使用微信扫码支付(元)

订单号:

遇到问题请联系在线客服

请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系在线客服
恭喜您,购买搜题卡成功 系统为您生成的账号密码如下:
重要提示:请勿将账号共享给其他人使用,违者账号将被封禁。
发送账号到微信 保存账号查看答案
怕账号密码记不住?建议关注微信公众号绑定微信,开通微信扫码登录功能
请用微信扫码测试
优题宝