设x0=0,x2=1,x1∈(0,1),已知要求一个插值多项式p∈P2且满足(1)当x1满足什么
设x0=0,x2=1,x1∈(0,1),已知
要求一个插值多项式p∈P2且满足
(1)当x1满足什么条件时,上述插值问题是适定的;
(2)当插值问题适定时,求出p(x);
(3)试对(2)中求出的p(x)进行误差分析。
设x0=0,x2=1,x1∈(0,1),已知
要求一个插值多项式p∈P2且满足
(1)当x1满足什么条件时,上述插值问题是适定的;
(2)当插值问题适定时,求出p(x);
(3)试对(2)中求出的p(x)进行误差分析。
第1题
设(X1,X2,...,X8)是取自正态总体N(0,1)的样本,如果
试确定常数a的值并求自由度m。
第2题
设随机变量X1,X2,...,Xn(n>1)相互独立同分布,其方差σ2>0,令随机变量,求D(X1+Y),Cov(X1,Y)。
第3题
设总体X的概率密度为.
其中9是未知参数(0< 0<1)X1,X2…Xn为来自总体X的简单随机样本,记N为样本值X1,X2…Xn中小于1的个数,求:
(1)的矩估计:
(2)的最大似然估计.
第4题
A、N(0,1)
B、N(μ,σ2/m)
C、(u,σ2)
D、(ημ,nσ2)
第6题
B.A的行列式|A|>0
C.对任意的x=(x1,x2,…,xn)T,xi≠0(i=1,2,...,n),有xTAx>0
D.存在正交矩阵Q,使得QTAQ=diag(λ1,λ2,…,λn),其中λi>0(i=1,2,…,n)
第7题
设X1,X2,...,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2){σ>0),则服从的分布是()。
第8题
设x1<x2<x3为三个实数,函数f(x)在[x1,x3]上连续,在(x1,x3)内二阶可导,且f(x1)=f(x2)=f(x3)。证明:在区间(x1,x3)内至少有一点c,使得f"(c)=0。
第10题
计算样本均值与样本方差时,常常先对数据x1,x2,...,xn作线性变换=(a,b为常数,b≠0),设分别是x1,x2,...,xn的样本均值和样本方差,分别是y1,y2,...,yn的样本均值和样本方差。证明:。
第11题
抛物线x2=-2y+2()
A.开口向上,顶点为(0,-1)
B.开口向上,顶点为(0,1)
C.开口向下,顶点为(0,-1)
D.开口向下,顶点为(0,1)